Analysis of novel RUNX2 mutations in Chinese patients with cleidocranial dysplasia

نویسندگان

  • Xianli Zhang
  • Yang Liu
  • Xiaozhe Wang
  • Xiangyu Sun
  • Chenying Zhang
  • Shuguo Zheng
چکیده

Cleidocranial dysplasia (CCD) is an autosomal dominant inheritable skeletal disorder characterized by cranial dysplasia, clavicle hypoplasia and dental abnormalities. This disease is mainly caused by heterozygous mutations in RUNX2, a gene that encodes an osteoblast-specific transcription factor. In the present study, mutational analyses of RUNX2 gene were performed on four unrelated Chinese patients with CCD. Four different RUNX2 mutations were detected in these patients, including one nonsense mutation (c.199C>T p.Q67X) and three missense mutations (c.338T>G p.L113R, c.557G>C p.R186T and c.673C>T p.R225W). Among them, two mutations (c.199C>T p.Q67X and c.557G>C p.R186T) were novel and the other two had been reported in previous literatures. Except for Q67X mutation located in the Q/A domain, other three mutations were clustered within the highly conserved Runt domain. Green fluorescent protein (GFP) and RUNX2 fusion protein analyses in vitro showed that nuclear accumulation of RUNX2 protein was disturbed by Q67X mutation, while the other two mutations (c.338T>G p.L113R and c.557G>C p.R186T) had no effects on the subcellular distribution of RUNX2. Luciferase reporter assay demonstrated that all the three novel RUNX2 mutations significantly reduced the transactivation activity of RUNX2 on osteocalcin promoter. Our findings enrich the evidence of molecular genetics that the mutations of RUNX2 gene are responsible for CCD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutational analysis of RUNX2 gene in Chinese patients with cleidocranial dysplasia.

Cleidocranial dysplasia (CCD) is a dominantly inherited skeletal dysplasia caused by mutations in the osteoblast-specific transcription factor-encoding gene, RUNX2. To correlate different RUNX2 mutations with CCD clinical spectrum, we studied six independent Chinese CCD patients. In five patients, mutations were detected in the coding region of the RUNX2 gene, including two frameshift mutations...

متن کامل

Identification of a Novel Splice Site Mutation in RUNX2 Gene in a Family with Rare Autosomal Dominant Cleidocranial Dysplasia

Introduction: Pathogenic variants of RUNX2, a gene that encodes an osteoblast-specific transcription factor, have been shown as the cause of CCD, which is a rare hereditary skeletal and dental disorder with dominant mode of inheritance and a broad range of clinical variability. Due to the relative lack of clinical complications resulting in CCD, the medical diagnosis of this disorder is challen...

متن کامل

A novel RUNX2 mutation (T420I) in Chinese patients with cleidocranial dysplasia.

Cleidocranial dysplasia (CCD) is an autosomal-dominant heritable skeletal disease caused by heterozygous mutations in the RUNX2 gene. We studied a Chinese family that included three affected individuals with CCD phenotypes; the clinical features of patients with CCD include delayed closure of fontanelles, frontal bossing, dysplasia of clavicles, late tooth eruption, and other skeletal anomalies...

متن کامل

Novel mutation of RUNX2 gene in a patient with cleidocranial dysplasia.

BACKGROUND Cleidocranial dysplasia is a rare hereditary skeletal disorder due to heterozygous loss of function mutations in the RUNX2 gene that encodes runt-related transcription factor 2 (RUNX2). Here we report a 52 year-old woman with cleidocranial dysplasia due to a novel RUNX2 mutation. CASE DESCRIPTION A 52 year-old Han Chinese woman presented with short stature and skeletal dysplasia th...

متن کامل

Mutations in the RUNX2 gene in Chinese patients with cleidocranial dysplasia.

Cleidocranial dysplasia (CCD) is an autosomal dominant inheritable skeletal disease caused by heterozygous mutations in an osteoblast-specific transcription factor, RUNX2. Mutational analyses of RUNX2 were done on 4 unrelated Chinese patients with CCD. One nonsense and 3 missense mutations were detected, including one novel mutation, a heterozygous G to C transition mutation at nucleotide 475 i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017